Advertisement

Picture Berlin Partner Hotspot for Startups 650x80px
Collaboration › Details

Cytosurge–Univ Tübingen: genome editing, 202103 collab cell line developm using FluidFM nano-injection for single cell CRISPR gene engineering

 

Period Period 2021-03-24
Organisations Partner, 1st Cytosurge AG
  Partner, 2nd University Hospital Tübingen
  Group University of Tübingen (Eberhard-Karls-Universität)
Products Product FluidFM technology
  Product 2 cell line development (recombinant protein production)
     

Cytosurge AG. (3/24/21). "Press Release: Cytosurge’s FluidFM Technology Facilitates Multiplex CRISPR Editing and Monoclonal Cell Line Development in less than Three Weeks". Zürich.

In collaboration with University Children's Hospital, Tübingen, the genomic loci of several genes were simultaneously targeted by a multiplexed FluidFM nano-injection into single CHO cells, directly delivering gRNA/Cas9 RNP complexes into the nucleus


Cytosurge, a leading global provider for precision single cell manipulation, announced today that its pioneering, patented FluidFM nano-probe enabled CRISPR multiplexing to generate monoclonal multiple Knock-Out cell lines in less than three weeks starting from the day of transfection until the clones have been characterized.

Pharmaceutical research and biologics manufacturing rely on genetically modified cell lines with genes that have been modified to induce the desired phenotype. In conventional cell line development pipelines, several candidates are evaluated within an iterative process to obtain stable monoclonal cell lines, a process that currently requires twelve to fourteen weeks. In comparison, by favoring a “bottom-up” approach, FluidFM technology can pick a single cell that it has modified and generate a clone out of it – in less than three weeks.

University Children's Hospital, Tübingen, and Cytosurge recently generated monoclonal multiple Knock-Out cell lines using FluidFM technology. Genomic loci of several genes were simultaneously targeted by a multiplexed FluidFM nano-injection into CHO cells, directly delivering gRNA/Cas9 RNP complexes into the nucleus. Using the same system, the successfully transfected cells were isolated for further expansion – more than 90% of the isolated cells developed into a stable monoclonal colony. Read the Application Note.

“Fourteen days after transfection, the clones were collected for analysis by Sanger sequencing. Overall, 50% of the clones showed mutations in targeted loci,” said Dr. Justin S Antony, University Children’s Hospital, Tübingen. “As this data demonstrates, the FluidFM bottom-up approach drastically reduces the processing time for monoclonal cell lines with multiple Knock-Out from months to less than three weeks. In turn, this technology allows the great opportunity to speed up the process for recombinant proteins and vaccine production, which might be advantageous to confront pandemics like COVID-19.”

The technological advances brought by Cytosurge’s FluidFM technology into the field of single-cell gene engineering have the potential to solve some of the most demanding challenges that scientists are currently facing when they need to rapidly and efficiently develop monoclonal cell lines. Current methods are adequate when applied to the most common cell lines and gene engineering strategies. However, they quickly reach their limits when dealing with uncommon, rare or fragile primary cell types that are also known to be hard-to-transfect, or when complex experimental design - for example, CRISPR multiplexing - is needed.

“These results show that multiple gRNAs can be simultaneously delivered into selected single cells by FluidFM nano-injection,” said Dr. Paul Monnier, Life Science Application Scientist, Cytosurge. “We believe that CRISPR multiplexing with the presented method can be scaled up to simultaneously co-inject several tens of gRNAs and that the Cytosurge FluidFM bottom-up approach will significantly accelerate development cycles.”


Contact

Cytosurge AG
Claudia Frey
claudia.frey@cytosurge.com
+41 43 544 87 20



Images



FluidFM Cell Line Development workflow. Day 1, cells are transfected via FluidFM nano-injection. On day 2, successfully transfected cells are selected and isolated via FluidFM pick and place. From day 3 to 14+, isolated single cells expand into a stable monoclonal cell line and their genome is analyzed.


About Cytosurge

Cytosurge AG develops, manufactures and distributes state-of-the-art nanotechnology solutions and systems based on its patented FluidFM® technology. At the heart of the technology are the hollow FluidFM probes, which have apertures down to 300 nm, enabling the handling of femtoliter volumes. Cytosurge brings with its FluidFM solutions significant benefits to a wide range of applications in life sciences, biophysics and mechanobiology. Unique benefits include quantitative volume measurements of injected compounds into single cells during drug development, improved CRISPR gene editing by direct delivery into the nucleus, isolation of selected cells directly from confluent culture, 2.5D nano-printing down to submicron levels, or single cell adhesion and colloidal probe measurements.

For more information: www.cytosurge.com

   
Record changed: 2021-03-25

Advertisement

Picture BIO Deutschland German Corona Special 2021 Digital 650x80px

More documents for Cytosurge AG


To subscribe to our free, monthly newsletter for the European life sciences, please send an e-mail to info@iito.de and simply fill the subject line with the word »LSE Newsletter«

To get even more information, please take a look at our [gs] professional services offering and read the gene-sensor Product Flyer [PDF file]

Advertisement

Picture Berlin Partner Network in German Capital Region 650x80px




» top